About this course
Who it's for
All A-Level Economics students.
Course series
Course outline
-
Ratios can come up in many situations in economics. The most obvious example is the topic of Comparative Advantage and the calculation of opportunity cost ratios. Other examples include productivity ratios, savings ratios and the terms of trade. This is not an exhaustive list, however, and you should be able to interpret any ratio that a data response case-study might give you and be able to calculate a ratio from data. Fractions are less common in economics and, as a general rule, you should try to work in decimals rather than in fractions. Firstly, it makes the maths easier but, secondly, most economic data is presented in decimals rather than fractions. Nevertheless, you should be confident in using fractions because sub-divisions of a whole such as firms’ market share, unemployment rates and components of AD could be described as fractions.
-
Ratios
-
Fractions
-
Game of Fractions - Calculation Activity
-
Calculate Comparative Advantage - Calculation Activity
-
Calculate the Mulitplier - Calculation Activity
-
-
You are virtually guaranteed to meet percentages in your A-Level Economics exams. This could be in the form of calculation or interpretation of percentages, percentage change and/or percentage points.
-
Percentages
-
Percentage Change
-
Percentage Points
-
Percentages and Percentage Points - True or False Activity
-
Calculate Interest Rates - Calculation Activity
-
Inflation Rate Targets - Higher or Lower Activity
-
Fractions, Percentages and Decimals - Match Up Activity
-
-
Averages: in economics we use both means and medians regularly. They allow us to compare values over time and between countries, such as average GDP growth or average propensity to consume. They allow us to review trends, such as rising average costs or falling average prices. Averages allow us to comment on the distribution of values when comparing mean and median values for the same data e.g. high values ‘skewing’ data. Quantiles: these are used when we want split up a population group so that we can assess equality. They are best known in relation to Lorenz curves but it is also vitally important that you are confident with data that is presented in quantiles. In economics, we tend to use four types of quantile: percentile, decile, quintile and quartile.
-
Means and Medians
-
Quantiles
-
Mean and Medians - Calculation Activity
-
-
Economists have to interpret, analyse and compare large numbers very frequently. For example, the value of German GDP runs into 13 figures: $3,940,000,000,000. Index numbers are a useful way of expressing economic data like this (whether it is time series or comparing / contrasting information). An index number is a figure reflecting price or quantity compared with a base value. The base value always has an index number of 100. The index number is then expressed as 100 times the ratio to the base value. Note that index numbers have no units e.g. £, Euros or $. A weighted index is an ‘average’ index, made up of a combination of other indices. You are likely to come across weighted indices when calculating (or interpreting) data on price indices or when using composite indicators such as the HDI.
-
Index Numbers
-
Weighted Index Numbers
-
Calculate Index Numbers - Calculation Activity
-
Calculating Index Numbers (Part 2) - Calculation Activity
-
-
Along with the concepts of ‘revenue and profit’, the topic of ‘costs’ underpins almost everything to do with the topic of "Theory of the Firm". We study Theory of the Firm in order to understand and predict the behaviour of firms. Being able to calculate all of a firm’s costs means that you will be able to analyse their behaviour confidently. In this topic we will not only look at how to perform the calculations but also how to construct the various curves and look at how the relate to one another
-
Short Run Costs
-
Long Run Costs
-
Marginal Costs
-
Calculate Costs - Calculation Activity
-
Costs - MCQ Activity
-
-
Along with the topic of ‘costs’, the concepts of revenue and profit help to underpin almost everything to do with the topic of Theory of the Firm. We study Theory of the Firm in order to understand and predict the behaviour of firms. Being able to calculate all of the firm’s revenues means that you will be able to analyse their behaviour confidently. You should also know the different types of profit that you may encounter in the specification and be able to identify the profit-maximising level of output. In this topic we will not only look at how to perform the calculations but also how to construct the various curves and look at how the relate to one another
-
Revenue
-
Profit
-
Calculate Revenues - Calculation Activity
-
-
Nominal numbers are current prices or unadjusted rates, without taking inflation or other factors into account. Real numbers, by contrast, refer to data that is adjusted for general price level changes over time. Economists convert nominal data into real data in order to remove the influence of inflation. Without doing so, comparisons of prices, GDP or wages over time would be very difficult. For example, if GDP increases from £1trn to $1.trn an economist would want to know how much of this increase in value is down to the general increase in the price level (inflation) and how much is down to the increases in output (the real GDP).
-
Converting between Real and Nominal data
-
Interpreting Real and Nominal Data
-
Calculate Real and Nominal Prices - Calculation Activity
-
-
In economics, elasticity is the responsiveness of one economic variable to a change in another. There are four important elasticities that you need to be aware of: - Price elasticity of demand (PED) - Income elasticity of demand (YED) - Cross-price elasticity of demand (XED) - Price elasticity of supply (PES)
-
Price Elasticity of Demand
-
PES, YED and XED
-
Calculate Price Elasticity of Demand - Calculation Activity
-
Price and Income Elasticity of Demand - Categorise Activity
-
Cross Elasticity of Demand and Price Elasticity of Supply - Categorise Activity
-
-
In economics, it is really important that you are confident in dealing with quantitative data that can be presented in a number of different formats. There may be no direct calculations involved, but understanding the message conveyed will be critical to being able to answer subsequent questions, which are often directly linked to the data source. Regardless of how it is presented, you should be able to draw reasonable conclusions from that data about correlations, proportions, significance, causation and so on. You also need the underlying arithmetical skills to be able to manipulate the data.
-
Graphical Forms 1
-
Graphical Forms 2
-
-
In this topic, we look at how to use numerical data in writing tasks. In particular, we look at comparative language (peaks/troughs, faster/slower, greater/less than, identifying anomalies and outliers etc…) as well looking at difference between describing data and explaining data. We also consider some tricky economic areas such as rates of change and the issue of correlation v causation. We also show you soe of the most common errors made by students in exams. We show how to look for these and provides ways to avoid getting those questions wrong.
-
Talking about Numbers
-
Hosts
-
Nik Georgiadis
Nik is the Head of Economics at a highly competitive independent school, teaching IB and A level. He is a former Principal Examiner with a leading exam board, and has been a tutor2u Economics contributor for the last 3 years.
-
Ruth Tarrant
Ruth has been Subject Lead in Economics at tutor2u for many years after a career of teaching Economics, Business, Politics and Maths in a range of secondary schools. She is a highly experienced A level Economics Examiner, and also teaches undergraduate Economics on a very part-time basis at the University of Oxford. Ruth is passionate about making economics fun, engaging and accessible for teachers and students.